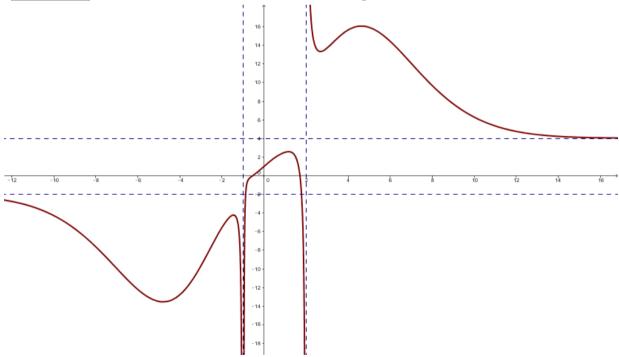
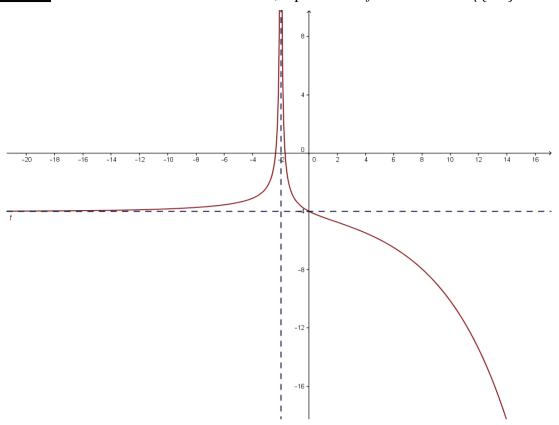

Limites de fonctions – lectures graphiques

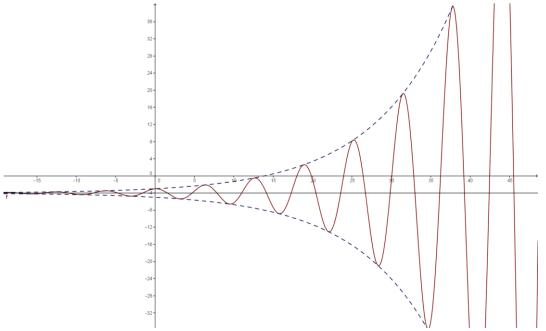

<u>Exercice 1</u>: À l'aide des représentations graphiques suivantes obtenue sur une calculatrice, estimer les limites en $+\infty$ et $-\infty$ de la fonction f représentée dans chaque cas :

<u>Exercice 2</u>: Tracez sur vos calculatrices les fonctions suivantes, et déterminer par lecture graphique les limites en $+\infty$ et $-\infty$:

a)
$$f(x) = 3x - 1$$
 b) $g(x) = x - x^3$ c) $h(x) = -x^2 + x + 1$ d) $k(x) = 2 + \frac{1}{x^2 + 1}$


Exercice 3 : Donner toutes les limites de la fonction représentée ci-dessous :

Exercice 4:


- 1) Tracer la fonction $f(x) = \frac{2x}{x^2} + x + 2$ sur votre caculatrice. Déterminer par lecture graphique les limites possibles.
- 2) Tracer la fonction $g(x) = \cos(x)$ sur votre calculatrice. Que peut-on dire de son comportement en $-\infty$ et en $+\infty$?

Exercice 5: On considère la courbe ci-dessous, représentant f définie sur $\mathbb{R} \setminus \{-2\}$.

- 1) Lire sur le graphique les limites $\lim_{x \to +\infty} f(x)$, $\lim_{x \to -\infty} f(x)$, $\lim_{x \to -2^+} f(x)$, $\lim_{x \to -2^-} f(x)$
- 2) Déterminer graphiquement le tableau de variation de f et y faire figurer les limites.

Exercice 6 : On considère la courbe ci-dessous, représentant f définie sur \mathbb{R} :

La droite d'équation y=-4 est la seule asymptote de f. On remarque que les oscillations croissent avec l'abscisse.

- 1) D'après le graphique, quelle est la limite en $-\infty$?
- 2) Que peut-on dire de la limite en $+\infty$?